Feature Selection Using a Genetic Algorithm for Intrusion Detection
نویسندگان
چکیده
We show the use of a genetic algorithm for feature subset selection over feature vectors that describe the system calls executed by privileged processes. Genetic feature subset selection significantly reduces the number of features used without adversely affecting the accuracy of the predictions.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملIntrusion Detection in Wireless Sensor Networks using Genetic Algorithm
Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999